https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:24691 Phyllanthus amarus is known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from P. amarus using response surface methodology (RSM). The results showed that the optimal microwave-assisted extraction parameters were an extraction time of 30 min, an irradiation time of 14 s min−1 and a ratio of solvent to sample of 150 mL g−1. The total phenolic content, phenolic extraction efficiency, saponin content, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity, 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging capacity and ferric reducing antioxidant power of the P. amarus achieved under these optimal parameters were 87.3 mg of gallic acid equivalents (GAE) per gram of dried sample, 69.7 %, 134.9 mg of escin equivalents (EE) per gram of dried sample, 997.8, 604.7 and 437.3 all in mg of trolox equivalents (TE) per gram of dried sample, respectively, which were not significantly different from the predicted values (86.9 mg of GAE per gram of dried sample, 67.3 %, 123.5 mg of EE per gram of dried sample, 1013.3 mg of TE per gram of dried sample, 530.6 mg of TE per gram of dried sample and 423.5 mg of TE per gram of dried sample, respectively). Accordingly, the optimal microwave-assisted extraction parameters of 30 min, 14 s min−1 and 150 mL g−1 are recommended for the extraction of enriched phenolics from P. amarus for potential application in the nutraceutical and pharmaceutical industries.]]> Wed 09 Feb 2022 15:54:22 AEDT ]]> Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:27402 Phyllanthus amarus (P. amarus) has been used as a herbal medicine, particularly for liver support, in many countries and its extracts have been shown to possess potent antioxidant and anticancer properties in vitro. The preparation of dried sample is crucial for further extraction and isolation of phytochemicals. In this study, the effects of six different drying methods (hot air, low-temperature air, infrared, microwave, sun, and vacuum drying) on the phytochemical yield and antioxidant capacity were determined to identify the optimal drying method for P. amarus. The results showed that different drying methods, as well as different drying conditions within each method, significantly affected phytochemical yield and antioxidant capacity of P. amarus extracts. Infrared drying at 30°C was the best method for both retention of bioactive compound yield and antioxidant capacity of P. amarus extract, with 12 compounds were identified. In contrast, low-temperature-air drying at 25°C not only required the longest drying time but also significantly reduced the levels of bioactive compounds and antioxidant capacity of P. amarus. Therefore, infrared drying at 30°C is suggested for drying P. amarus for subsequent assessment of bioactivity.]]> Sat 24 Mar 2018 07:34:08 AEDT ]]>